Multivalent O-antigen polysaccharide glycoconjugate vaccines are under development to prevent invasive infections caused by pathogenic Enterobacteriaceae. Sequence type 131 (ST131) Escherichia coli of serotype O25b has emerged as the predominant lineage causing invasive multidrug-resistant extraintestinal pathogenic E. coli (ExPEC) infections. We observed the prevalence of E. coli O25b ST131 among a contemporary collection of isolates from U.S. bloodstream infections from 2013 to 2016 (n = 444) and global urinary tract infections from 2014 to 2017 (n = 102) to be 25% and 24%, respectively. To maximize immunogenicity of the serotype O25b O antigen, we investigated glycoconjugate properties, including CRM197 carrier protein cross-linking (single-end versus cross-linked "lattice") and conjugation chemistry (reductive amination chemistry in dimethyl sulfoxide [RAC/DMSO] versus ((2-((2-oxoethyl)thio)ethyl)carbamate [eTEC] linker). Using opsonophagocytic assays (OPAs) to measure serum functional antibody responses to vaccination, we observed that higher-molecular-mass O25b long-chain lattice conjugates showed improved immunogenicity in mice compared with long- or short-chain O antigens conjugated via single-end attachment. The lattice conjugates protected mice from lethal challenge with acapsular O25b ST131 strains as well as against hypervirulent O25b isolates expressing K5 or K100 capsular polysaccharides. A single 1-μg dose of long-chain O25b lattice conjugate constructed with both chemistries also elicited robust serum IgG and OPA responses in cynomolgus macaques. Our findings show that key properties of the O-antigen carrier protein conjugate such as saccharide epitope density and degree of intermolecular cross-linking can significantly enhance functional immunogenicity.
Keywords: Escherichia coli; MDR; O antigen; O25b; ST131; glycoconjugate vaccine.