Pimozide is an antipsychotic drug used to treat chronic psychosis, such as Tourette's syndrome. Despite its widespread clinical use, pimozide can cause unexpected adverse effects, including arrhythmias. However, the adverse effects of pimozide on vascular K+ channels have not yet been determined. Therefore, we investigated the effects of pimozide on voltage-gated K+ (Kv) channels in rabbit coronary arterial smooth muscle cells. Pimozide concentration-dependently inhibited the Kv currents with an IC50 value of 1.78 ± 0.17 μM and a Hill coefficient of 0.90 ± 0.05. The inhibitory effect on the Kv current by pimozide was highly voltage-dependent in the voltage range of Kv channel activation, and additive inhibition of the Kv current by pimozide was observed in the full activation voltage range. The decay rate of inactivation was significantly accelerated by pimozide. Pimozide shifted the inactivation curve to a more negative potential. The recovery time constant from inactivation increased in the presence of pimozide. Furthermore, pimozide-induced inhibition of the Kv current was augmented by applying train pulses. Although pretreatment with the Kv2.1 subtype inhibitor guangxitoxin and the Kv7 subtype inhibitor linopirdine did not alter the degree of pimozide-induced inhibition of the Kv currents, pretreatment with the Kv1.5 channel inhibitor DPO-1 reduced the inhibitory effects of pimozide on Kv currents. Pimozide induced membrane depolarization. We conclude that pimozide inhibits Kv currents in voltage-, time-, and use (state)-dependent manners. Furthermore, the major Kv channel target of pimozide is the Kv1.5 channel.
Keywords: Pimozide; time-dependent; use-dependent; voltage-dependent; voltage-gated K+ channels.