Automated programs that carry out targeted metabolite identification and quantification using proton nuclear magnetic resonance spectra can overcome time and cost barriers that limit metabolomics use. However, their performance needs to be comparable to that of an experienced spectroscopist. A previously analyzed pediatric sepsis data set of serum samples was used to compare results generated by the automated programs rDolphin and BATMAN with the results obtained by manual profiling for 58 identified metabolites. Metabolites were selected using Student's t-tests and evaluated with several performance metrics. The manual profiling results had the highest performance metrics values, especially for sensitivity (76.9%), area under the receiver operating characteristic curve (0.90), precision (62.5%), and testing accuracy based on a neural net (88.6%). All three approaches had high specificity values (77.7-86.7%). Manual profiling by an expert spectroscopist outperformed two open-source automated programs, indicating that further development is needed to achieve acceptable performance levels.
Keywords: 1H-NMR; BATMAN; Mnova; manual profiling; pediatric sepsis; rDolphin; targeted profiling.