Heavy metal cadmium (Cd) at high concentrations severely disturbs plant growth and development. The E3 ubiquitin ligase involved in protein degradation is critical for plant tolerance to abiotic stress, but the role of E3 ubiquitin ligases in Cd tolerance is largely unknown in tomato. Here, we characterized an E3 ubiquitin ligase gene Sl1, which was highly expressed in roots under Cd stress in our previous study. The subcellular localization of Sl1 revealed that it was located in plasma membranes. In vitro ubiquitination assays confirmed that Sl1 had E3 ubiquitin ligase activity. Knockout of the Sl1 gene by CRISPR/Cas9 genome editing technology reduced while its overexpression increased Cd tolerance as reflected by the changes in the actual quantum efficiency of PSII photochemistry (ΦPSII) and hydrogen peroxide (H2O2) accumulation. Cd-induced increased activities of antioxidant enzymes including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR) were compromised in sl1 mutants but were enhanced in Sl1 overexpressing lines. Furthermore, the content of Cd in both shoots and roots increased in sl1 mutants while reduced in Sl1 overexpressing plants. Gene expression assays revealed that Sl1 regulated the transcript levels of heavy metal transport-related genes to inhibit Cd accumulation. These findings demonstrate that Sl1 plays a critical role in regulating Cd tolerance by relieving oxidative stress and resisting heavy metal transportation in tomato. The study provides a new understanding of the mechanism of plant tolerance to heavy metal stress.
Keywords: antioxidant enzymes; heavy metal stress; protein degradation; tomato; ubiquitination.