Beauveria bassiana, as a well-studied entomopathogenic fungus, has a great potential for the biological control of insect pests. Lipid metabolism has been linked to the life cycle of B. bassiana; however, the underlying mechanisms remain unknown. In this study, a homolog of yeast steryl acetyl hydrolase 1 (Say1) was functionally characterized. The loss of B. bassianaSAY1 (BbSAY1) impaired the lipid homeostasis in conidia, with a significant reduction in oleic acid content. The ΔBbsay1 mutant strain displayed anelevated accumulation of lipid bodies and aweakened membrane permeability. As for phenotypic aspects, gene loss resulted in significant defects in germination, conidiation, and virulence. Our findings highlight that Say1, involved in lipid homeostasis, contributes to the cytomembrane integrity, development, and virulence in B. bassiana.
Keywords: development; entomopathogenic fungus; lipid homeostasis; steryl acetyl hydrolase 1; virulence.