The physiological effects of exercise vary as a function of frequency and length. However, research on the duration-dependent effects of exercise has focused primarily on young adults and less is known about the influence of exercise duration in the aged. The current study compared the effects of short-term and long-term running wheel access on hippocampal neurogenesis and neuroimmune markers in aged (19-23 months) male C57BL/6J mice. Aged mice were given 24-hour access to a running wheel for 14 days (short-term) or 51 days (long-term). Groups of non-running aged and young (5 months) mice served as comparison groups to detect age-related differences and effects of exercise. Long-term, but not short-term, exercise increased hippocampal neurogenesis as assessed by number of doublecortin (DCX) positive cells in the granular cell layer. Assessment of cytokines, receptors, and glial-activation markers showed the expected age-related increase compared to young controls. In the aged, exercise as a function of duration regulated select aspects of the neuroimmune profile. For instance, hippocampal expression of interleukin (IL)-10 was increased only following long-term exercise. While in contrast brain levels of IL-6 were reduced by both short- and long-term exercise. Additional findings showed that exercise does not modulate all aspects of age-related neuroinflammation and/or may have differential effects in hippocampal compared to brain samples. Overall, the data indicate that increasing exercise duration produces more robust effects on immune modulation and hippocampal neurogenesis.
Keywords: DCX; IL-10; IL-6; cytokine; wheel running.
Copyright © 2022 IBRO. Published by Elsevier Ltd. All rights reserved.