The M1 polarization of microglia and neuroinflammation restrict the treatment of acute spinal cord injury (ASCI), and long non-coding ribonucleic acid (lncRNA) maternally expressed gene 3 (MEG3) expression is lessened in ASCI. However, the function and mechanism of lncRNA MEG3 in the M1 polarization of microglia and neuroinflammation in ASCI are unclear. The expressions of lncRNA MEG3 in ASCI mouse spinal cord tissues and lipopolysaccharide (LPS)-treated primary microglia and BV2 cells were quantified through a quantitative real-time polymerase chain reaction. In-vitro assays were conducted to explore the function of lncRNA MEG3 in the M1 polarization of microglia and neuroinflammation in ASCI. RNA degradation, RNA immunoprecipitation, RNA pull-down, cycloheximide-chase, and ubiquitination analyses were carried out to probe into the mechanism of lncRNA MEG3 in the M1 polarization of microglia and neuroinflammation in ASCI. The lncRNA MEG3 expression was lessened in the ASCI mouse spinal cord tissues and LPS-treated primary microglia and BV2 cells, and the overexpression of lncRNA MEG3 restrained the M1 polarization of microglia and the neuroinflammation by regulating the NF-κB signaling pathway. For the investigation of the potential mechanism of such, the overexpression of lncRNA MEG3 restrained the M1 polarization of microglia through the HuR/A20/NF-κB axis and boosted the motor function recovery and neuroinflammation relief in the mice with SCI. The overexpression of lncRNA MEG3 restrained the M1 polarization of microglia through the HuR/A20/NF-κB axis.
Keywords: HuR/A20/NF-κB; M1 polarization of microglia; acute spinal cord injury; lncRNA MEG3; neuroinflammation.
© 2022 The Authors. Brain Pathology published by John Wiley & Sons Ltd on behalf of International Society of Neuropathology.