Reconstruction of historical relationships between geographic regions within a species' range can indicate dispersal patterns and help predict future responses to shifts in climate. Ascaphus truei (coastal tailed frog) is an indicator species of the health of forests and perennial streams in the Coastal and Cascade Mountains of the Pacific Northwest of North America. We used two genetic techniques-microsatellite and genotype-by-sequencing (GBS)-to compare the within-region genetic diversity of populations near the northern extent of the species' range (British Columbia, Canada) to two geographic regions in British Columbia and two in Washington, USA, moving toward the core of the range. Allelic richness and heterozygosity declined substantially as latitude increased. The northernmost region had the lowest mean expected heterozygosities for both techniques (microsatellite, M = 0.20, SE = 0.080; GBS, M = 0.025, SE = 0.0010) and the southernmost region had the highest (microsatellite, M = 0.88, SE = 0.054; GBS, M = 0.20, SE = 0.0029). The northernmost regions (NC and MC) clustered together in population structure models for both genetic techniques. Our discovery of reduced diversity may have important conservation and management implications for population connectivity and the response of A. truei to climate change.
Keywords: amphibian genetics; ascaphus; genotype‐by‐sequencing; microsatellite genotyping; range expansion.
© 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.