Ovarian combined serous borderline tumor/low-grade serous carcinomas (SBT/LGSC) and mesonephric-like adenocarcinomas (MLA) have been previously reported and the presence of identical oncogenic somatic mutations in both components supports the concept that at least some of MLAs arise from a Müllerian origin. We report 2 cases of ovarian combined SBT/LGSC and mesonephric-like lesion. Case 1 was a 70-yr-old woman presented with a liver lesion and omental carcinomatosis. Histologic examination revealed biphasic tumors in bilateral ovaries consisting of conventional SBT and invasive MLA with extraovarian spread. The right ovary also had a component of cribriform variant of SBT/noninvasive LGSC. The SBT/LGSC component was diffusely positive for Pax8, WT-1, and ER, focally positive for PR, and negative for GATA3, while the MLA component was diffusely positive for GATA3 but negative for WT-1, ER, and PR. Molecular analysis revealed a KRAS G12V mutation in both the SBT/LGSC and MLA components, indicating their clonal origin. Case 2 was a 58-yr-old woman who presented with conventional type SBT in both ovaries. In addition, the left ovarian tumor demonstrated a few areas (each <5 mm) of mesonephric-like differentiation/hyperplasia in close proximity to the serous-type epithelium, with an immunophenotype of focal GATA3 expression, luminal pattern of CD10 staining and negative WT-1, ER, and PR staining. This phenomenon has been reported in endometrioid borderline tumor but not in any serous type lesions. The findings in case 1 provide further evidence to demonstrate the clonal relationship between these morphologically and immunophenotypically distinct components. It also supports the theory that, unlike cervical mesonephric carcinomas originating from mesonephric remnants, MLAs are derived from a Müllerian-type lesion with differentiation into mesonephric lineage. The presence of a hyperplastic mesonephric-like lesion/differentiation in case 2 indicates that a precursor lesion in the same lineage with the potential to develop into MLA exists in the ovary.
Copyright © 2022 by the International Society of Gynecological Pathologists.