LMO3 promotes proliferation and metastasis of papillary thyroid carcinoma cells by regulating LIMK1-mediated cofilin and the β-catenin pathway

Open Med (Wars). 2022 Mar 7;17(1):453-462. doi: 10.1515/med-2022-0419. eCollection 2022.

Abstract

LIM domain only 3 (LMO3) interacts with transcription factors to regulate target genes involved in embryonic development. The oncogenic role of LMO3 in hepatocellular carcinoma, gastric cancer, and neuroblastoma has been reported recently. However, little is known about the biological function of LMO3 in papillary thyroid carcinoma (PTC). First, expression of LMO3 was dramatically enhanced in the PTC tissues and cell lines. Second, knockdown of LMO3 in PTC cells repressed cell proliferation and promoted cell apoptosis with downregulated Bcl-2 and upregulated cleaved caspase-3/PARP. In vitro cell migration and invasion of PTC were also retarded by siRNA-mediated silence of LMO3. Third, protein expression of LIM kinase (LIMK) 1-mediated phosphorylation of cofilin and nuclear translocation of β-catenin were reduced by the knockdown of LMO3. pcDNA-mediated overexpression of LIMK1 promoted cofilin phosphorylation and attenuated LMO3 silence-induced decrease of cofilin phosphorylation. Last, enhanced LIMK1 expression promoted PTC cell proliferation and metastasis and counteracted the suppressive effects of LMO3 silence on PTC cell proliferation and metastasis. In conclusion, LMO3 promoted PTC cell proliferation and metastasis by regulating LIMK1-mediated cofilin and the β-catenin pathway.

Keywords: LIMK1; LMO3; cofilin; metastasis; papillary thyroid carcinoma; proliferation; β-catenin.