The rapid emergence and spread of antimicrobial resistance has become a global public health concern that threatens the effective treatment of infectious diseases. One major approach adopted to overcome antimicrobial resistance is the use of plant extracts individually and/or with combination of antibiotics with plant extracts, which may lead to new ways of treating infectious diseases and essentially representing a potential area for further future investigations. In this study, the antifungal activities of Azadirachta indica leaf and Catharanthus roseus flower extracts against fluconazole-resistant Candida albicans strains (isolated from pregnant women with vulvovaginal candidiasis) and anti-methicillin-resistant Staphylococcus aureus (MRSA) were evaluated by agar well diffusion, microdilution, and biofilm inhibition assays. Subsequently, the determination of the combined antimicrobial activity of the individual plant extracts with (fluconazole and voriconazole) and (ampicillin, tetracycline, and streptomycin) against C. albicans strains and MRSA, respectively, was evaluated by checkerboard microdilution assay. Results from the study showed that the antimicrobial activity of the two plant extracts determined by time-kill kinetics was fungistatic with their MICs ranging from 0.1 to 4 mg/mL. Interestingly, all extracts were proved as good biofilm inhibitors of resistant C. albicans and MRSA from 10.1 to 98.82%. Their combination interaction with fluconazole, voriconazole, ampicillin, tetracycline, and streptomycin ranged from synergy to antagonism as per the parameters used. Overall, these results showed that A. indica leaf and C. roseus flower extracts have significant antifungal property. Furthermore, A. indica leaf and C. roseus flower extracts alone or in combination with fluconazole and voriconazole could provide a promising approach to the management of candidiasis caused by drug-resistant strains as well as their interaction with the antibacterial agents to combat the common infections caused by MRSA.
Copyright © 2022 David Neglo et al.