Weak interfacial activity and poor wettability between fiber and matrix are known to be the two main factors that restrict the mechanical properties of carbon fiber-reinforced composites (CFRCs). Herein, inspired by high strength and toughness characteristics of wing feathers of Black Kite (Milvus migrans), natural hook-groove microstructure system (HGMS) and underlying mechanical interlocking mechanism were carefully investigated. Biomimetic HGMS based on dopamine-functionalized carbon fibers and ZnO nanorods were constructed successfully by a two-step modification method to enhance interfacial adhesion. Further, CFRCs featured with biomimetic HGMS were prepared by a vacuum-assisted contact molding method. Experimental results confirmed that flexural strength and interlaminar shear strength of the bioinspired CFRCs were effectively improved by 40.02 and 101.63%, respectively. The proposed bioinspired design strategy was proved to be flexible and effective and it was anticipated to provide a promising design approach and facile fabrication method for desirable CFRCs with excellent mechanical properties.
Keywords: Biomimetics; Composite materials; Materials characterization; Materials science; Materials structure.
© 2022 The Author(s).