Long-distance dispersal of plant pathogens in the air can establish diseases in other areas and lead to an increased risk of large-scale epidemics. Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat in China. Hubei is an important overwintering region for Pst in China, and this overwintering region is a determinant of stripe rust severity in eastern China. In 2017, stripe rust disease caused a pandemic in the Hubei region and resulted in great yield losses of wheat. To explain the disease pandemic, a total of 595 single-lesion samples of stripe rust were collected in spring, including 204 in five provinces in 2017 and 391 in four provinces in 2018, and genotyped with 13 simple sequence repeat makers. The samples were classified into 12 subpopulations based on the locations and year of collection. Genetic diversity was determined for the collection and each subpopulation. Differentiation and gene flow were determined between subpopulations. STRUCTURE analyses and discriminant analysis of principal components were conducted, and the results were used to infer the relationships between subpopulations. Our study revealed a new route of Pst transmission from the Yunnan-Guizhou Plateau to the Hubei region. The Pst inoculum of northwestern Hubei came from Gansu in the northwest, whereas the inoculum in southern Hubei came from the Yunnan-Guizhou Plateau via upper airflow. After the initial inocula infected wheat plants and multiplied in northern and southern Hubei, urediniospores produced in these regions further spread together along the middle reach of Hanshui Valley and made exchanges there. The finding of the new transmission route of Pst is important for improving integrated stripe rust disease management, which should have a profound impact on the balance of agricultural ecology in China.
Keywords: Hubei region; Puccinia striiformis f. sp. tritici; Yunnan–Guizhou Plateau; agricultural ecology; long-distance migration; wheat stripe rust.