Background: COVID-19 outbreaks still occur in English care homes despite the interventions in place.
Methods: We developed a stochastic compartmental model to simulate the spread of SARS-CoV-2 within an English care home. We quantified the outbreak risk with baseline non-pharmaceutical interventions (NPIs) already in place, the role of community prevalence in driving outbreaks, and the relative contribution of all importation routes into a fully susceptible care home. We also considered the potential impact of additional control measures in care homes with and without immunity, namely: increasing staff and resident testing frequency, using lateral flow antigen testing (LFD) tests instead of polymerase chain reaction (PCR), enhancing infection prevention and control (IPC), increasing the proportion of residents isolated, shortening the delay to isolation, improving the effectiveness of isolation, restricting visitors and limiting staff to working in one care home. We additionally present a Shiny application for users to apply this model to their facility of interest, specifying care home, outbreak and intervention characteristics.
Results: The model suggests that importation of SARS-CoV-2 by staff, from the community, is the main driver of outbreaks, that importation by visitors or from hospitals is rare, and that the past testing strategy (monthly testing of residents and daily testing of staff by PCR) likely provides negligible benefit in preventing outbreaks. Daily staff testing by LFD was 39% (95% 18-55%) effective in preventing outbreaks at 30 days compared to no testing.
Conclusions: Increasing the frequency of testing in staff and enhancing IPC are important to preventing importations to the care home. Further work is needed to understand the impact of vaccination in this population, which is likely to be very effective in preventing outbreaks.
Keywords: COVID-19; Care home; Long-term care facility; Mathematical model; Non-pharmaceutical interventions; PCR; SARS-CoV-2; Testing.
© 2022. The Author(s).