Several aminoacyl-tRNA synthetases are sensitive to reagents that modify sulfhydryl groups. We report here the significance of N-ethylmaleimide (NEM)-mediated inactivation of Escherichia coli glycyl-tRNA synthetase, and alpha 2 beta 2 enzyme. We confirmed earlier observations that NEM abolishes synthetase-catalyzed aminoacylation with pseudo-first order kinetics and provided a second method of proof that the site of inactivation is located in the beta-subunit. Using oligonucleotide-directed mutagenesis of the glyS gene, each beta-subunit cysteine codon (positions 98, 395, and 450) was replaced, individually, by an alanine codon. The three resulting mutant proteins are each active in vivo, and their in vitro aminoacylation activities are comparable to that of the native enzyme. A mutant incorporating all three amino acid substitutions is also active in vivo and in vitro. These results establish conclusively that a beta-subunit cysteine thiol is not required for the catalysis of aminoacylation. The Cys98----Ala and Cys450----Ala mutants are inactivated by NEM with the same kinetics as the wild-type protein. However, the Cys395----Ala mutant is refractory to NEM. This suggests that NEM inactivation of the native enzyme is due to alkylation of Cys395. Aware that inactivation may result from steric effects, we constructed a mutant with a bulkier amino acid residue at position 395 (Cys395----Gln). The aminoacylation activity of this protein is less than 10% of that of the wild-type enzyme. The glutamine substitution affects only the tRNA-dependent step of the reaction--the rate of glycyl adenylate synthesis is not lowered. In these features, the mutant resembles the NEM-inactivated protein. We propose that the NEM sensitivity of glycyl-tRNA synthetase, and possibly of other synthetases, arises from steric or conformational effects of the alkylated cysteine side chain.