5-Hydroxymethylfurfural (HMF) containing C=O, C-O, and furan ring functional groups is an important platform chemical derived from C6 sugars. The selective hydrogenation of C=O in HMF produces 2,5-dihydroxymethylfuran (DHMF), which is a potential sustainable substitute for petroleum-based building blocks. Here, 2,5-furandicarboxylic acid (H2 FDC), a promising sustainable alternative to terephthalic acid, was employed as a renewable ligand to synthesize a novel Cu metal-organic framework (Cu-FDC). With a polyvinyl pyrrolidone (PVP)-assisted approach, 2D Cu-FDC nano-lamellae of micrometer lateral dimensions and nanometer thickness could be obtained, which could be used as a precursor to fabricate 2D oxygen-rich carbon nanosheets embedded with Cu nanoparticles (denoted CFP-300) after a thermal treatment at 300 °C under N2 atmosphere. The synthesized CFP-300 exhibited excellent catalytic performance and stability for the selective hydrogenation of HMF to DHMF. These results demonstrated a sustainable route to synthesize efficient catalysts by employing metal-organic frameworks based on renewable ligands.
Keywords: biomass; copper; heterogeneous catalysis; metal-organic frameworks; sustainable chemistry.
© 2022 Wiley-VCH GmbH.