The rising incidence of postoperative depression (POD) in recent years has placed a heavy burden on patients' physical and mental health. At this point in time, however, POD pathogenesis remains poorly understood and novel therapeutic strategies are being sought. The present study aimed to clarify esketamine's protective effects and possible mechanisms of action in POD. To this avail, we used an animal model of postoperative depression to analyze behavioral, parameters, plus the inflammatory response in serum and in the medial prefrontal cortex (mPFC). Using immunofluorescence staining, we detected the number of microglia and parvalbumin (PV) in mPFC, and determined changes in neuronal dendritic spine density via Golgi staining. Expression of Iba1, PSD95 and NF-κB was examined by Western blot analysis. Our results show that esketamine can significantly improve depression-like symptoms caused by anesthesia and surgery. In addition, esketamine administration reversed the decrease in the density of PV neurons and restored synaptogenesis in mPFC which had been perturbed by inflammation. The evidence obtained suggests esketamine's anti-inflammatory effects may be mediated by the BDNF/TrkB signaling pathway and possibly by attenuation of the nuclear factor κB (NF-κB) pathway. These data warrant further investigations into the interplay of esketamine, and microglia in the modulation of POD symptomatology.
Keywords: Esketamine; Microglia; Neuroinflammation; Postoperative depression.
Copyright © 2022 Elsevier B.V. All rights reserved.