Aims: To develop a new intraocular lens power selection method with improved accuracy for general cataract patients receiving Alcon SN60WF lenses.
Methods and analysis: A total of 5016 patients (6893 eyes) who underwent cataract surgery at University of Michigan's Kellogg Eye Center and received the Alcon SN60WF lens were included in the study. A machine learning-based method was developed using a training dataset of 4013 patients (5890 eyes), and evaluated on a testing dataset of 1003 patients (1003 eyes). The performance of our method was compared with that of Barrett Universal II, Emmetropia Verifying Optical (EVO), Haigis, Hoffer Q, Holladay 1, PearlDGS and SRK/T.
Results: Mean absolute error (MAE) of the Nallasamy formula in the testing dataset was 0.312 Dioptres and the median absolute error (MedAE) was 0.242 D. Performance of existing methods were as follows: Barrett Universal II MAE=0.328 D, MedAE=0.256 D; EVO MAE=0.322 D, MedAE=0.251 D; Haigis MAE=0.363 D, MedAE=0.289 D; Hoffer Q MAE=0.404 D, MedAE=0.331 D; Holladay 1 MAE=0.371 D, MedAE=0.298 D; PearlDGS MAE=0.329 D, MedAE=0.258 D; SRK/T MAE=0.376 D, MedAE=0.300 D. The Nallasamy formula performed significantly better than seven existing methods based on the paired Wilcoxon test with Bonferroni correction (p<0.05).
Conclusions: The Nallasamy formula (available at https://lenscalc.com/) outperformed the seven other formulas studied on overall MAE, MedAE, and percentage of eyes within 0.5 D of prediction. Clinical significance may be primarily at the population level.
Keywords: Lens and zonules; Optics and Refraction.
© Author(s) (or their employer(s)) 2023. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.