Post-extraction bleeding and alveolar bone resorption are the two frequently encountered complications after tooth extraction that result in poor healing and rehabilitation difficulties. The present study covalently bonded polyphosphate onto a collagen scaffold (P-CS) by crosslinking. The P-CS demonstrated improved hemostatic property in a healthy rat model and an anticoagulant-treated rat model. This improvement is attributed to the increase in hydrophilicity, increased thrombin generation, platelet activation and stimulation of the intrinsic coagulation pathway. In addition, the P-CS promoted the in-situ bone regeneration and alveolar ridge preservation in a rat alveolar bone defect model. The promotion is attributed to enhanced osteogenic differentiation of bone marrow stromal cells. Osteogenesis was improved by both polyphosphate and blood clots. Taken together, P-CS possesses favorable hemostasis and alveolar ridge preservation capability. It may be used as an effective treatment option for post-extraction bleeding and alveolar bone loss.
Statement of significance: Collagen scaffold is commonly used for the treatment of post-extraction bleeding and alveolar bone loss after tooth extraction. However, its application is hampered by insufficient hemostatic and osteoinductive property. Crosslinking polyphosphate with collagen produces a modified collagen scaffold that possesses improved hemostatic performance and augmented bone regeneration potential.
Keywords: Alveolar ridge preservation; Blood clotting; Osteogenesis; Polyphosphate.
© 2021 The Authors.