Background: Non-small cell lung cancer (NSCLC) is one of the leading causes responsible for cancer-associated death globally. The aim of this study was to illustrate the function of circular RNA_0020123 (circ_0020123) in NSCLC progression and its associated mechanism.
Methods: RNA and protein expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot assay. Cell proliferation, migration, invasion, angiogenesis, apoptosis and autophagy were analyzed to assess the role of circ_0020123/microRNA-512-3p (miR-512-3p)/coronin 1C (CORO1C) axis in NSCLC cells. Tumorigenesis in nude mice was analyzed to determine the in vivo role of circ_0020123. The intermolecular target relation was confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays.
Results: Circ_0020123 expression was aberrantly upregulated in NSCLC tissues and cell lines. Circ_0020123 interference markedly restrained cell proliferation, migration, invasion, angiogenesis and autophagy and induced cell apoptosis of NSCLC cells. Circ_0020123 knockdown suppressed xenograft tumor growth in vivo. Circ_0020123 acted as a molecular sponge for miR-512-3p. Circ_0020123 silencing-induced effects in NSCLC cells were largely reversed by the knockdown of miR-512-3p. miR-512-3p interacted with the 3' untranslated region (3'UTR) of CORO1C. CORO1C overexpression largely reversed miR-512-3p accumulation-induced influences in NSCLC cells. Circ_0020123 positively regulated CORO1C expression by sponging miR-512-3p in NSCLC cells.
Conclusion: Circ_0020123 aggravated NSCLC progression by binding to miR-512-3p to induce CORO1C expression, which provided new potential targets for the treatment of NSCLC.
Keywords: CORO1C; angiogenesis; circ_0020123; miR-512-3p; non-small cell lung cancer.
© 2022 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.