In this study, the Ni(OH)2/CuO heterostructured photocatalysts have been prepared via microwave (MW) hydrothermal method. The results indicate that the Ni(OH)2/CuO heterostructured composite exhibits a strong absorption in the UV and Vis regions. The construction of the heterojunction also improves the photogenerated carrier transport and inhibits the electron-hole separation due to the enhanced absorbance and the well alignment of the energy band at the Ni(OH)2/CuO interface. The photocatalytic capability of the heterostructured composites with different Ni(OH)2/CuO molar ratios is evaluated by the photodegradation of methylene blue under visible light illumination. The results reveal that the Ni(OH)2/CuO (1:1) heterostructures show the best photocatalytic efficiency, which is 2.18 and 6.13 times higher than that of pure Ni(OH)2 and CuO, respectively. Besides, the Ni(OH)2/CuO composites also reveal remarkable biocompatibility and strong photocatalytic activity in the degradation of antibiotics such as ciprofloxacin (CIP) and tetracycline (TC) and inactivation of Escherichia coli (E. coli).
Keywords: CuO; Heterojunction; Microorganism; Ni(OH)(2); Photocatalyst.
Copyright © 2022 Elsevier Ltd. All rights reserved.