Patients with bone cancer pain (BCP) are more prone to aversion. which not only causes mental distress but also aggravates BCP. However, the mechanism of BCP-related aversion is still unclear. Previous studies have demonstrated that the brain-derived neurotrophic factor (BDNF)-tropomyosin receptor kinase B (TrkB) signaling pathway of the rostral anterior cingulate cortex (rACC) plays an important role in the regulation of emotions related to chronic pain, such as neuropathic pain or inflammatory pain; however, few studies have investigated the role of this pathway in cancer pain. This study explored the role of BDNF in cancer pain-related aversion in the rACC and to determine whether N-methyl D-aspartate receptor subtype 2B (NR2B) and extracellular signal-regulated kinase (ERK)-cAMP response element-binding (CREB) signaling are involved in cancer pain-related aversion. A Sprague-Dawley rat model of BCP (one of the classic BCP models) was established, and the changes in pain aversion were detected by mechanical stimulation-induced conditioned place avoidance. Our findings confirmed that rats with BCP exhibited intense pain aversion accompanied by the up-regulated BDNF expression in the rACC. Additionally, the pain aversion of BCP rats was reduced while blocking the BDNF-TrkB. Furthermore, the expression of NR2B and phosphorylated ERK (pERK)/phosphorylated CREB (pCREB) were up-regulated with the development of pain aversion, whereas the use of NR2B blocker Ro25-6981, or ERK inhibitor U0126 could reduce the pain aversion. The expression of NR2B and pERK/pCREB were up-regulated after exogenous BDNF was injected into the rACC, whereas the expression levels of NR2B and pERK/pCREB were down-regulated after blocking the BDNF-TrkB signaling. In conclusion, the BDNF-TrkB signaling in the rACC mediates the generation of aversion in rats with BCP, which requires the involvement of NR2B and the ERK-CREB signaling pathway.
Keywords: Brain-derived neurotrophic factor; CAMP response element binding; Cancer pain-related aversion; Extracellular signal-regulated kinase; N-methyl D-aspartate receptor subtype 2B; Rostral anterior cingulate cortex.
Copyright © 2022. Published by Elsevier Inc.