Exosomes: Potential executors of IL-35 gene-modified adipose-derived mesenchymal stem cells in inhibiting acute rejection after heart transplantation

Scand J Immunol. 2022 Aug;96(2):e13171. doi: 10.1111/sji.13171. Epub 2022 Apr 14.

Abstract

Heart transplantation has become the only 'cure' for end-stage heart diseases, but acute allograft rejection is the major obstacle to the survival of patients. Our previous studies showed that IL-35 gene-modified adipose-derived mesenchymal stem cells (IL-35-ASCs) can effectively inhibit graft rejection and prolong the survival of transplanted hearts in mice. This study further explored the mechanism of IL-35-ASCs, especially focusing on the important role of IL-35-ASC-derived exosomes (IL-35-ASCexos) in inhibiting acute rejection. IL-35-ASCs were constructed in vitro and pretreated with IL-35 neutralizing antibody and GW4869 (an inhibitor of neutral sphingomyelinase that impairs exosome biogenesis/release). Then, pretreated IL-35-ASCs and CD4+ T cells were cocultured in Transwell plates, and changes in regulatory T cells (Tregs) and cytokines were detected. Then, IL-35-ASCexos were extracted, identified and analysed, and their immunoregulatory effects on CD4+ T cells were studied through coculture experiments. Finally, IL-35-ASCexos were applied to a mouse heart transplantation model to investigate the therapeutic effects on acute rejection of the allograft. The coculture experiment showed that the IL-35-neutralizing antibody could not completely block the immunosuppressive function of IL-35-ASCs, while GW4869 could effectively reduce their immunoregulatory characteristics. Similar to IL-35-ASCs, IL-35-ASCexos also have powerful immunosuppressive properties, effectively upregulating the Treg ratio in vivo and in vitro and prolonging graft survival. As the main effectors of IL-35-ASCs, these findings highlight the therapeutic potential of IL-35-ASCexos in inhibiting acute cardiac rejection of the allograft. Although the specific mechanism remains unclear and needs to be further explored, IL-35-ASCexos therapy is expected to become a new method to inhibit acute graft rejection.

Keywords: ASCs; IL-35; exosomes; heart transplantation.

MeSH terms

  • Adipose Tissue
  • Animals
  • Exosomes*
  • Graft Rejection / prevention & control
  • Heart Transplantation*
  • Immunosuppressive Agents
  • Interleukins / genetics
  • Mesenchymal Stem Cells*
  • Mice
  • T-Lymphocytes, Regulatory

Substances

  • Immunosuppressive Agents
  • Interleukins