The Emerging Role of MR Urography in Imaging Megaureters in Children

Front Pediatr. 2022 Mar 23:10:839128. doi: 10.3389/fped.2022.839128. eCollection 2022.

Abstract

Introduction: Megaureter, described as ureter dilatation more than 7 mm in diameter, commonly associated with other anomalies, is still a diagnostic and therapeutic challenge. Magnetic resonance urography (MRU) appears as a promising method in urinary tract imaging, providing both anatomical and functional information. There are several postprocessing tools to assess renal function (including differential renal function) and severity of ureteral obstruction based on MRU. Still, the place of this method in the diagnostic algorithm of ureteropelvicalyceal dilatation with megaureter remains underestimated. Analysis of imaging findings in a group of children diagnosed with megaureter was done.

Material and methods: A retrospective analysis of magnetic resonance urography (MRU) was performed in 142 consecutive patients examined from January 2013 to September 2019. Twenty-five patients meeting the criteria of megaureter (dilatation more than 7 mm) in MRU were included in the further analysis. The MRU, ultrasound (US), and scintigraphy results were compared and analyzed together and compared with clinical data.

Results: The sensitivity and specificity of US was comparable to the MRU in the assessment of upper urinary tract morphology (p > 0.05). In five out of 25 children, megaureter was found in each kidney; in a single case, both poles of a duplex kidney were affected. In the diagnosis of ureter ectopia, the MRU was superior to the US for which sensitivity did not exceed 16%. The US showed limited value in the diagnostics of segmental ureter dysplasia as a cause of primary megaureter when compared with MRU. Four cases were visualized in MRU studies, whereas the US examination was negative (all confirmed during surgery). There was a moderate correlation between relative renal function between fMRU and scintigraphy (t = 0.721, p = 0.477) and in the severity of obstruction assessment between both methods (r = 0.441, p < 0.05). However, in 10 kidneys with megaureter, the results in scintigraphy were inconclusive due to the signal from the megaureter imposing on the renal field.

Conclusions: MRU seems to be a preferred method in the diagnostic algorithm for megaureter, providing both anatomical and functional information. MRU is superior to US and scintigraphy in diagnosing urinary tract anomalies with megaureter.

Keywords: CAKUT; MR urography; children; hydronephrosis; megaureter.