PET imaging of mitochondrial function in acute doxorubicin-induced cardiotoxicity: a proof-of-principle study

Sci Rep. 2022 Apr 12;12(1):6122. doi: 10.1038/s41598-022-10004-6.

Abstract

Mitochondrial dysfunction plays a key role in doxorubicin-induced cardiotoxicity (DIC). In this proof-of-principle study, we investigated whether PET mapping of cardiac membrane potential, an indicator of mitochondrial function, could detect an acute cardiotoxic effect of doxorubicin (DOX) in a large animal model. Eight Yucatan pigs were imaged dynamically with [18F](4-Fluorophenyl)triphenylphosphonium ([18F]FTPP+) PET/CT. Our experimental protocol included a control saline infusion into the left anterior descending coronary artery (LAD) followed by a DOX test infusion of either 1 mg/kg or 2 mg/kg during PET. We measured the change in total cardiac membrane potential (ΔΨT), a proxy for the mitochondrial membrane potential, ΔΨm, after the saline and DOX infusions. We observed a partial depolarization of the mitochondria following the DOX infusions, which occurred only in myocardial areas distal to the intracoronary catheter, thereby demonstrating a direct association between the exposure of the mitochondria to DOX and a change in ΔΨT. Furthermore, doubling the DOX dose caused a more severe depolarization of myocardium in the LAD territory distal to the infusion catheter. In conclusion, [18F]FTPP+ PET-based ΔΨT mapping can measure partial depolarization of myocardial mitochondria following intracoronary DOX infusion in a large animal model.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antibiotics, Antineoplastic / toxicity
  • Cardiotoxicity / diagnostic imaging
  • Cardiotoxicity / etiology
  • Disease Models, Animal
  • Doxorubicin* / toxicity
  • Mitochondria, Heart
  • Myocytes, Cardiac
  • Positron Emission Tomography Computed Tomography*
  • Positron-Emission Tomography

Substances

  • Antibiotics, Antineoplastic
  • Doxorubicin