Cortisol is a glucocorticoid hormone that is critical to immune system functioning. Studies show that prolonged exposure to high levels of cortisol can lead to a range of physical health ailments including the progression of tumor growth. The ability to monitor cortisol levels over time can therefore be used to facilitate decision-making during cancer treatment. However, collecting serum or saliva samples to monitor cortisol in situ is inconvenient, costly, and impractical. In this paper, we propose a general predictive modeling process that uses passively sensed actigraphy data to predict underlying salivary cortisol levels using graph representation learning. We compare machine learning models with handcrafted feature engineering and with graph representation learning, which includes Graph2Vec, FeatherGraph, GeoScattering and NetLSD. Our preliminary results generated from data from 10 newly diagnosed pancreatic cancer patients demonstrate that machine learning models with graph representation learning can outperform the handcrafted feature engineering to predict salivary cortisol levels.
Keywords: Actigraphy data; Graph representation learning; Mobile sensing; Predictive modeling; Salivary cortisol.
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021.