A Multifunctional Ionic Liquid Additive Enabling Stable and Efficient Perovskite Light-Emitting Diodes

Small. 2022 May;18(19):e2200498. doi: 10.1002/smll.202200498. Epub 2022 Apr 14.

Abstract

The electroluminescence performance and long-term stability of perovskite light-emitting diodes (PeLEDs) are greatly affected by the film quality of perovskite emitting layer. Herein, the authors employ an ionic liquid, 1-butyl-3-methylimidazolium trifluoromethanesulfonate ([BMIm]OTf), to manipulate the growth of quasi-2D perovskite films by providing heterogeneous nucleation sites. The [BMIm]OTf molecules simultaneously realize uniform perovskite films by reducing the contact angles of precursor solution on the hole transport layer (HTL), and eliminate defect states through bonding [BMIm]+ cations to negatively-charged uncoordinated Br and OTf- anions to uncoordinated Pb2+ defects that effectively suppresses the defect states assisted nonradiative recombination in perovskite films. As a result, the efficiency and the operational lifetime of the resultant PeLED are enhanced by more than twofold and threefold, respectively, achieving a maximum external quantum efficiency of 17.6% and an operational lifetime of over 500 min at an initial brightness of 100 cd m-2 .

Keywords: defect passivation; ionic liquids; light-emitting diodes; perovskites; stability.