Coronavirus disease 2019 (COVID-19) is a pandemic respiratory disease caused by a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-COV-2). COVID-19 is typically associated with fever and influenza-like symptoms in its early stages. Severe cases progress to acute respiratory distress syndrome/acute lung injury (ARDS/ALI), multiple organ damage, and even death. Until now, there has been a lack of specific and definitive treatment for COVID-19, which further challenges the situation. Previous clinical and laboratory data showed that neutrophils were significantly decreased in patients who died from COVID-19 in the early stages of disease; when patients were admitted to the hospital the number of neutrophils increased dramatically from 7 to 14 days after admission, which is correlated to myocardial and liver injury, thromboembolic complications, and poor prognosis. Autopsy findings revealed abundant neutrophil infiltration in the pulmonary capillaries and exudation into the alveolar cavity. Therefore, we speculate that neutrophils may play an important role in the initiation and progression of COVID-19. In this review, the relationship among the dynamic changes in neutrophils, cytokine storms, and the release of neutrophil extracellular traps (NETs) with the progression of COVID-19 was elucidated in detail. With a better understanding of the pathogenic mechanisms this can lead to improved clinical applications which are identified and discussed in this review.
Keywords: COVID-19; cytokine storm; immunothrombosis; neutrophil; neutrophil extracellular trap.
AJTR Copyright © 2022.