Crinum jagus (C. jagus; J. Thomps.) Dandy (Liliaceae) is a pantropical plant known for its medicinal values and pharmacological properties. The study assessed the protective effects and changes in oxidative stress indices due to C. jagus leaf extracts on the toluene-induced liver and kidney injuries in rats. The study was conducted on 8-week-old male Wistar rats (n = 80), weighing 243.3 ± 1.42 g. Group I, 1 ml/kg distilled water for 7 days; Group II, 4.5 ml/kg toluene once, 1 ml/kg distilled water for 7 days; Group III, 4.5 ml/kg toluene once, 500 mg/kg methanolic extract for 7 days; Group IV, 4.5 ml/kg toluene once, 500 mg/kg aqueous extract for 7 days; Group V, 500 mg/kg methanolic extract for 7 days; Group VI, 500 mg/kg aqueous extract for 7 days; Group VII, 500 mg/kg of vitamin C for 7 days; Group, VIII, 4.5 ml/kg toluene once, 500 mg/kg vitamin C for 7 days, all administrations were given by oral gavage. The phytochemical contents, absolute and relative organ weights of liver and kidneys, liver and kidney function tests, antioxidant status, as well as histological tests were analyzed using standard protocols. The tannins, flavonoids, and polyphenols were in highest concentration in both extracts, content in methanol extract (57.04 ± 1.51 mgg-1, 35.43 ± 1.03 mgg-1, 28.2 ± 0.34 mgg-1 respectively) > aqueous extract (18.74 ± 1.01 mgg-1, 13.43 ± 0.47 mgg-1, 19.65 ± 0.21 mgg-1 respectively). In the negative control group (II), bodyweights significantly (P < 0.05) reduced by 22%, liver weight and kidney weight significantly (P < 0.05) increased by 42% and 83% respectively, liver-to-bodyweight and kidney-to-bodyweight ratios increased significantly (P < 0.05); serum liver function tests (LFTs) i.e., bilirubin, alkaline phosphatase (ALP), Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Gamma-glutamyl transferase (GGT), and serum kidney function tests (creatinine and urea) were significantly (P < 0.05) elevated; oxidant status (tissue malondialdehyde; MDA) was significantly (P < 0.05) elevated, antioxidant status i.e., tissue superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels was significantly (P < 0.05) reduced; with markedly visible renal and hepatic histopathological findings, compared to the normal control group. In C. jagus extract test groups (III and IV), the parameters were significantly (P < 0.05) alleviated and reversed to normal/near normal compared to the negative control. The LFTs, kidney function tests, and antioxidant status were significantly (P < 0.05) more improved with the methanol extract test and standard control groups compared to the aqueous extract test group; Also, the methanol extract test group showed better histological features than the aqueous extract test and standard control groups. The methanolic extract shows better antioxidant potential due to the availability of more nonenzymatic antioxidants (tannins, flavonoids, and polyphenols). The findings showed that toluene is a very aggressive xenobiotic due to the promotion of oxidative stress and peroxidation of cellular lipids, but C. jagus leaves provide significant protection through the reducing power of nonenzymatic antioxidants and their ability to induce endogenous antioxidant enzymes (SOD, CAT, and glutathione reductase or GR) causing reduced cellular lipid peroxidation and tissue damages, quickened tissue repair, and improved cell biology of liver and kidneys during toluene toxicity. The methanol leaf extract provides better protection and should be advanced for more experimental and clinical studies to confirm its efficacy in alleviating oxidative stress tissue injuries, specifically due to toluene.
Keywords: ALP, Alkaline phosphatase; ALT, Alanine aminotransferase; AST, Aspartate Aminotransferase; Anti-lipid peroxidation; Antioxidants; Catalase Crinum jagus; GGT, Gamma-glutamyl transferase; GR, glutathione reductase; GSH, Glutathione; Glutathione superoxide dismutase; Histoprotective; LFTs, Liver function tests; MDA, malondialdehyde; Malondialdehyde; SOD, Superoxide dismutase; TOL, Toluene; Toluene toxicity; VC, Vitamin C.
© 2022 The Authors.