A polycystic ovarian syndrome (PCOS) is the most common endocrine disorder affecting females. Furthermore, it is a heterogeneous disease with a variety of etiologies and outcomes. Patients frequently complain about infertility, irregular menstruation, acne, seborrheic dermatitis, hirsutism, and obesity. PCOS can be caused by hypothalamic-pituitary-ovarian axis dysfunction, heredity, or metabolic abnormalities. PCOS is characterized by chronic low-level inflammation, which includes an imbalance in pro-inflammatory factor secretion, endothelial cell dysfunction, and leukocytosis. PCOS is also distinguished by hormonal and immune dysregulation. During PCOS, immune cells and immune regulatory molecules play critical roles in maintaining metabolic homeostasis and regulating immune responses. Because of oligo/anovulation, patients with PCOS have low progesterone levels. Therefore, low progesterone levels in PCOS overstimulate the immune system, causing it to produce more estrogen, which leads to a variety of autoantibodies. This review aims to summarize the immune regulation involved in the pathogenesis of PCOS and pave the way for the development of better PCOS treatment options in the near future.
Keywords: Immunity; Inflammation; Metabolism; Polycystic ovary syndrome; Regulation.
Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.