Radioactivity was measured in a micellar gel dosimeter, a polymer gel dosimeter, and water was irradiated by carbon ion beams at various beam energy conditions. Monte Carlo simulation was also performed to estimate the radioactivity. Short-lived positron-emitting nuclides were observed immediately after irradiation, but they decayed rapidly into the background. At 24 h post-irradiation, the dominant measured radioactivity was of 7Be. The simulation also showed minor activity of 24Na and 3H; however, they were not experimentally observed. The measured radioactivity was independent of the type of gel dosimeter under all irradiation conditions, suggesting that the radioactivity was induced by the interaction of carbon ions with water (the main component of the gel dosimeters). The ratio between the simulated and measured radioactivity was within 0.9-1.5. The activity concentration of 7Be was found to be less than 1/10 of the value derived using the exemption concept proposed by the International Atomic Energy Agency. This result should be applicable to irradiated gel dosimeters containing mainly water and 0-4 wt.% C and 0-1.7 wt.% N.
Keywords: Monte Carlo simulation; carbon ion radiotherapy; micellar hydrogel; polymer hydrogel; radioactivity.