Background: Health researchers are increasingly using natural language processing (NLP) to study various mental health conditions using both social media and electronic health records (EHRs). There is currently no published synthesis that relates specifically to the use of NLP methods for bipolar disorder, and this scoping review was conducted to synthesize valuable insights that have been presented in the literature.
Objective: This scoping review explored how NLP methods have been used in research to better understand bipolar disorder and identify opportunities for further use of these methods.
Methods: A systematic, computerized search of index and free-text terms related to bipolar disorder and NLP was conducted using 5 databases and 1 anthology: MEDLINE, PsycINFO, Academic Search Ultimate, Scopus, Web of Science Core Collection, and the ACL Anthology.
Results: Of 507 identified studies, a total of 35 (6.9%) studies met the inclusion criteria. A narrative synthesis was used to describe the data, and the studies were grouped into four objectives: prediction and classification (n=25), characterization of the language of bipolar disorder (n=13), use of EHRs to measure health outcomes (n=3), and use of EHRs for phenotyping (n=2). Ethical considerations were reported in 60% (21/35) of the studies.
Conclusions: The current literature demonstrates how language analysis can be used to assist in and improve the provision of care for people living with bipolar disorder. Individuals with bipolar disorder and the medical community could benefit from research that uses NLP to investigate risk-taking, web-based services, social and occupational functioning, and the representation of gender in bipolar disorder populations on the web. Future research that implements NLP methods to study bipolar disorder should be governed by ethical principles, and any decisions regarding the collection and sharing of data sets should ultimately be made on a case-by-case basis, considering the risk to the data participants and whether their privacy can be ensured.
Keywords: bipolar disorder; computational linguistics; mental health; mental illness; natural language processing.
©Daisy Harvey, Fiona Lobban, Paul Rayson, Aaron Warner, Steven Jones. Originally published in JMIR Mental Health (https://mental.jmir.org), 22.04.2022.