Considering that it is difficult for traditional materials to simultaneously meet the requirements for filling grouting of water-filled karst caves and subsequent shield tunneling, an environmentally friendly and controllable new underwater cementitious filling material (NUC-FM) is developed, with abandoned shield mud as the basic raw material. Through laboratory tests, the mechanical property parameters of NUC-FM are tested, and its micromechanism is analyzed. The research results show that there is excellent synergistic interactions among shield mud, cement, flocculant, fly ash and other raw materials. The NUC-FM grouting filling material with superior performance can be prepared when the water binder ratio is between 0.45 and 0.6 and the water consumption is between 270 and 310 kg/m3. It has the characteristics of non-dispersion underwater and moderate consolidated body strength. The compressive strength of the NUC-FM consolidated body samples under each mix proportion is much higher than 0.5 MPa, which meets the technical strength requirements of a construction site, and the microstructure shows that there is an obvious dense and stable block structure inside. The cost of the NUC-FM prepared with an optimized mix proportion is only 34.57 dollars/m3, which is far lower than the market purchase price of concrete and cement mortar. It can be predicted that the NUC-FM is an ideal filling grouting material for water-filled karst caves in shield tunnels in water-rich karst areas.
Keywords: NUC-FM; karst; mechanical properties; microstructure; mix proportion.