This study reports the therapeutic effectiveness of doxorubicin-conjugated zinc oxide nanoparticles against lung cancer cell line. The zinc oxide nanoparticles (ZnONPs) were first synthesised using a fungus, isolated from air with an extraordinary capability to survive in very high concentrations of zinc salt. Molecular analysis based on 18S rRNA gene sequencing led to its identification as Aspergillus niger with the NCBI accession no. OL636020. The fungus was found to produce ZnONPs via the reduction of zinc ions from zinc sulphate. The ZnONPs were characterised by various biophysical techniques. ZnONPs were further bioconjugated with the anti-cancer drug doxorubicin (DOX), which was further confirmed by different physical techniques. Furthermore, we examined the cytotoxic efficacy of Doxorubicin-bioconjugated-ZnONPs (DOX-ZnONPs) against lung cancer A549 cells in comparison to ZnONPs and DOX alone. The cytotoxicity caused due to ZnONPs, DOX and DOX-ZnONPs in lung cancer A549 cells was assessed by MTT assay. DOX-ZnONPs strongly inhibited the proliferation of A549 with IC50 value of 0.34 μg/mL, which is lower than IC50 of DOX alone (0.56 μg/mL). Moreover, DOX-ZnONPs treated cells also showed increased nuclear condensation, enhanced ROS generation in cytosol and reduced mitochondrial membrane potential. To investigate the induction of apoptosis, caspase-3 activity was measured in all the treated groups. Conclusively, results of our study have established that DOX-ZnONPs have strong therapeutic efficacy to inhibit the growth of lung cancer cells in comparison to DOX alone. Our study also offers substantial evidence for the biogenically synthesised zinc oxide nanoparticle as a promising candidate for a drug delivery system.
Keywords: A549; ZnONPs; bioconjugation; doxorubicin; lung cancer.