Humic acid (HA) as a soil natural organic matter (NOM) can participate in the interaction between proteins and clay minerals, depending on clay type, HA and protein content, and solution conditions. The effect of HA on the interaction of lysozyme (LSZ) with kaolinite (Kao) and montmorillonite (Mont) was investigated at (initial) pHi 5 and 8. In the solutions containing both HA and LSZ, HA/LSZ complexes were formed with a net charge density depending on pH and HA/LSZ mass ratio f. LSZ adsorption on clays in the presence of HA is dominated by adsorption of HA/LSZ complexes. The HA/LSZ mass ratio (fIEP,pHi) at the isoelectric point (IEP) is pH dependent. At f <fIEP,pHi the HA/LSZ complexes are positively charged and adsorb well to the negatively charged Mont and Kao surface fractions. The adsorption levels on Mont are considerably larger than on Kao, which is mainly due to the much larger area fraction of modestly hydrophobic basal plates of Mont. The presence of HA increased the plateau adsorption of LSZ on Kao and Mont for both pHi values, and the LSZ adsorption increased with increasing HA content and pHi values due to a decreasing mutual repulsion of the bound HA/LSZ complexes. At pHi 8 complications arose for low initial LSZ concentrations, for f <fIEP,pHi the HA/LSZ complexes were only weakly positive and formed dispersed aggregates and for f >fIEP,pHi the HA/LSZ complexes were negative, both conditions caused relatively high equilibrium concentrations of LSZ in solution that decreased with increasing initial LSZ concentration. The present results enhance our insight in protein soil interactions for the case that clay particles are brought in contact with aqueous solutions that contain modest amounts of both NOM and protein and stress the importance of the NOM/protein mass ratio and solution pH.
Keywords: Clays; Humic acid (HA); LSZ adsorption and removal; Lysozyme (LSZ); Mass ratio of HA/LSZ (f); pH.
Copyright © 2022 Elsevier B.V. All rights reserved.