New treatment options, such as targeted therapies, are urgently needed for the treatment of colorectal cancer (CRC), the third leading cause of cancer-related deaths worldwide. The current study focuses on demonstrating the therapeutic efficacies of APG-1252-M1 (an active form of the prodrug, APG-1252 or pelcitoclax), a highly potent Bcl-2/Bcl-XL dual inhibitor in clinical trials, against CRC and understanding the underlying mechanisms. APG-1252-M1 effectively decreased the survival of CRC cell lines, particularly those expressing relatively low levels of Mcl-1, with the induction of apoptosis. High levels of Mcl-1 were significantly correlated with decreased sensitivity of CRC cell lines to APG-1252-M1. When combined with an Mcl-1 inhibitor, APG-1252-M1 synergistically decreased the survival and induced apoptosis of APG-1252-M1-insensitive cell lines with high levels of Mcl-1. This combination further decreased the survival and enhanced apoptosis even in sensitive cell lines with relatively low levels of Mcl-1, whereas enforced expression of ectopic Mcl-1 in these cells abrogated APG-1252-M1's effects on decreasing cell survival and inducing apoptosis, which could be reversed by Mcl-1 inhibition. APG-1252-M1 rapidly induced cytochrome C and Smac release from mitochondria with caspase-3 and PARP cleavage. Deficiency of Bax in CRC cells abolished APG-1252-M1's ability to induce apoptosis, indicating that APG-1252-M1 induces Bax-dependent apoptosis. The current study thus demonstrates the potential of APG-1252-M1 as a monotherapy in the treatment of CRC, particularly those with low Mcl-1 expression, or in combination with an Mcl-1 inhibitor, warranting further evaluation in vivo and in the clinic.
Keywords: Bcl-2; Bcl-X(L), APG-1252-M1 (APG-1252); Colorectal cancer; Mcl-1 apoptosis.
Copyright © 2022. Published by Elsevier Inc.