Hsa-Mir-320c, Hsa-Mir-200c-3p, and Hsa-Mir-449c-5p as Potential Specific miRNA Biomarkers of COPD: A Pilot Study

Pathophysiology. 2022 Mar 29;29(2):143-156. doi: 10.3390/pathophysiology29020013.

Abstract

Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory disease commonly induced by cigarette smoke. The expression of miRNAs can be altered in patients with COPD and could be used as a biomarker. We aimed to identify a panel of miRNAs in bronchoalveolar lavage (BAL) to differentiate COPD patients from smokers and non-smokers with normal lung function. Accordingly, forty-five subjects classified as COPD, smokers, and non-smokers (n = 15 per group) underwent clinical, functional characterization and bronchoscopy with BAL. The mean age of the studied population was 61.61 ± 12.95 years, BMI 25.72 ± 3.82 Kg/m2, FEV1/FVC 68.37 ± 12.00%, and FEV1 80.07 ± 23.63% predicted. According to microarray analysis, three miRNAs of the most upregulated were chosen: miR-320c, miR-200c-3p, and miR-449c-5p. These miRNAs were validated by qPCR and were shown to be differently expressed in COPD patients. ROC analysis showed that these three miRNAs together had an area under the curve of 0.89 in differentiating COPD from controls. Moreover, in silico analysis of candidate miRNAs by DIANA-miRPath showed potential involvement in the EGFR and Hippo pathways. These results suggest a specific 3-miRNA signature that could be potentially used as a biomarker to distinguish COPD patients from smokers and non-smoker subjects.

Keywords: COPD; biomarker; lung disease; miRNAs.