Cysteinyl leukotrienes (CysLTs) have been defined as central mediators of inflammation. Despite our extensive understanding of these bioactive lipid mediators in the pathogenesis of diseases such as asthma, allergic rhinitis, and even neurological disorders, information regarding the eye is markedly lacking. As a result, this study examined the expression profiles of two major CysLT receptors, CysLT1 and CysLT2, in the cornea using experimental mouse models of Pseudomonas aeruginosa-induced keratitis with contrasting outcomes: susceptible C57BL/6 (B6) and resistant BALB/c. Postinfection, disparate levels of CysLT receptors were accompanied by distinct expression profiles for select proinflammatory and anti-inflammatory cell surface markers detected on macrophages and polymorphonuclear neutrophils between the two strains. Further, inhibition of either CysLT receptor converted the disease response of both strains, where corneal perforation was prevented in B6 mice, and BALB/c mice fared significantly worse. In addition, receptor antagonist studies revealed changes in inflammatory cell infiltrate phenotypes and an influence on downstream CysLT receptor signaling pathways. Although the B6 mouse model highlights the established proinflammatory activities related to CysLT receptor activation, results generated from BALB/c mice indicate a protective mechanism that may be essential to disease resolution. Further, basal expression levels of CysLT1 and CysLT2 were significantly higher in uninfected corneas of both mouse strains as opposed to during infection, suggestive of a novel role in homeostatic maintenance within the eye. In light of these findings, therapeutic targeting of CysLT receptors extends beyond inhibition of proinflammatory activities and may impact inflammation resolution, as well as corneal surface homeostasis.
Copyright © 2022 by The American Association of Immunologists, Inc.