Exposure assessment of polycyclic aromatic hydrocarbons in refined coal tar sealant applications

Int J Hyg Environ Health. 2022 May:242:113971. doi: 10.1016/j.ijheh.2022.113971. Epub 2022 Apr 25.

Abstract

Background: Refined coal tar sealant (RCTS) emulsions are used to seal the surface of asphalt pavement. Nine of the 22 polycyclic aromatic hydrocarbons (PAHs) evaluated in this study are classified as known, probable, or possible human carcinogens. Exposure assessment research for RCTS workers has not been published previously.

Objectives: The overall objective of this study was to develop a representative occupational exposure assessment of PAH exposure for RCTS workers based on worksite surveys. The specific aims were to: 1) quantify full-shift airborne occupational exposures to PAHs among RCTS workers; 2) quantify workers' dermal exposures to PAHs; 3) quantify biomarkers of PAH exposure in workers' urine; 4) identify specific job titles associated with RCTS exposure; and 5) apply these results to a biological exposure index to assess risk of potential genotoxicity from occupational exposures.

Methods: A total of twenty-one RCTS workers were recruited from three companies. Personal and area air samples were collected using a modification of NIOSH Method 5515. Dermal exposure was assessed by hand and neck wipes before and after shifts. Twenty-two PAHs were quantified via gas chromatography-mass spectrometry selected ion monitoring. Internal dose was estimated by quantifying select PAH metabolites in pre- and post-shift urine samples using on-line solid phase extraction-high performance liquid chromatography-tandem mass spectrometry.

Results: PAH levels in the worker breathing zones were highest for naphthalene, acenaphthene, and phenanthrene, with geometric means of 52.1, 11.4, and 9.8 μg/m3, respectively. Hand wipe levels of phenanthrene, fluoranthene and pyrene were the highest among the 22 PAHs with geometric means of 7.9, 7.7, and 5.5 μg/cm2, respectively. Urinary PAH biomarkers for naphthalene, fluorene, phenanthrene, and pyrene were detected in all workers and were higher for post-shift samples than those collected pre-shift. Urinary concentrations of the metabolite 1-hydroxypyrene were greater than the American Conference of Governmental Industrial Hygienists (ACGIH) Biological Exposure Index (BEI) for this metabolite in 89 percent of post-shift samples collected on the final day of the work week or field survey. Statistically significances were found between concentrations of fluorene, naphthalene, and phenanthrene in the breathing zone of workers and their corresponding urinary PAH biomarkers. Workers were placed in two work place exposure groups: applicators and non-applicators. Applicators had higher total PAH concentrations in personal breathing zone (PBZ) air samples than non-applicators and were more likely to have post-shift hand wipe concentrations significantly higher than pre-shift concentrations. Concentrations of post-shift urinary biomarkers were higher, albeit not significantly, for applicators than non-applicators.

Conclusions: The exposure results from RCTS worker samples cannot be explained by proximal factors such as nearby restaurants or construction. Air and skin concentration levels were substantially higher for RCTS workers than previously published levels among asphalt workers for all PAHs. PAH profiles on skin wipes were more consistent with RCTS sealant product than air samples. Last day post-shift urinary concentrations of 1-hydroxypyrene greatly exceeded the ACGIH BEI benchmark of 2.5 μg/L in 25 of 26 samples, which suggests occupational exposure and risk of genotoxicity. When pyrene and benzo[a]pyrene were both detected, concentration ratios from personal exposure samples were used to calculate the adjusted BEI. Concentrations of 1-hydroxypyrene exceeded the adjusted BEIs for air, hand wipes, and neck wipes in most cases. These results indicate the need to increase safety controls and exposure mitigation for RCTS workers.

Keywords: Coal tar sealants; N-heterocycles; Polycyclic aromatic hydrocarbons (PAHs).

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Air Pollutants, Occupational* / analysis
  • Biomarkers / urine
  • Coal Tar* / analysis
  • Environmental Monitoring / methods
  • Fluorenes / analysis
  • Humans
  • Hydrocarbons / analysis
  • Hydrocarbons / chemistry
  • Naphthalenes / analysis
  • Occupational Exposure* / analysis
  • Phenanthrenes* / urine
  • Polycyclic Aromatic Hydrocarbons* / urine
  • Pyrenes

Substances

  • Air Pollutants, Occupational
  • Biomarkers
  • Fluorenes
  • Hydrocarbons
  • Naphthalenes
  • Phenanthrenes
  • Polycyclic Aromatic Hydrocarbons
  • Pyrenes
  • Coal Tar