Hydroxylated Multi-Walled Carbon Nanotubes Covalently Modified with Tris(hydroxypropyl) Phosphine as a Functional Interlayer for Advanced Lithium-Sulfur Batteries

Angew Chem Int Ed Engl. 2022 Jul 11;61(28):e202204327. doi: 10.1002/anie.202204327. Epub 2022 May 11.

Abstract

We have successfully constructed a new type of intercalation membrane material by covalently grafting organic tris(hydroxypropyl)phosphine (THPP) molecules onto hydroxylated multi-walled carbon nanotubes (CNT-OH) as a functional interlayer for the advanced LSBs. The as-assembled interlayer has been demonstrated to be responsible for the fast conversion kinetics of polysulfides, the inhibition of polysulfide shuttle effect, as well as the formation of a stable solid electrolyte interphase(SEI) layer. By means of spectroscopic and electrochemical analysis, we further found THPP plays a key role in accelerating the conversion of polysulfides into low-ordered lithium sulfides and suppressing the loss of polysulfides, thus rendering the as-designed lithium-sulfur battery in this work a high capacity, excellent rate performance and long-term stability. Even at low temperatures, the capacity decay rate was only 0.036 % per cycle for 1700 cycles.

Keywords: Catalytic Conversion; Interlayers; Lithium-Sulfur Batteries.