Read, PJ, Pedley, JS, Eirug, I, Sideris, V, and Oliver, JL. Impaired stretch-shortening cycle function persists despite improvements in reactive strength followingafter anterior cruciate ligament reconstruction. J Strength Cond Res 36(5): 1238-1244, 2022-Reactive strength index (RSI) during a single-leg drop jump (SLDJ) has been indicated to determine return-to-sport readiness after anterior cruciate ligament (ACL) reconstruction, but only cross-sectional studies are available. Ground reaction force data and characterization of stretch-shortening cycle (SSC) function also remain sparse. Single-leg drop jump performance, ground reaction force, and SSC function were examined in soccer players with ACL reconstruction (n = 26) and matched controls (n = 25). Injured players were tested at 2 time points (32 and 42 weeks postsurgery). Stretch-shortening cycle function was classified as good (no impact peak and spring like), moderate (impact peak but still spring like or no impact peak and not spring like), or poor (impact peak and not spring like). The involved limb displayed lower-jump height, poorer RSI, less spring-like behavior, earlier peak landing force, and a greater ratio of landing peak to take-off peak force compared with the uninvolved limb and controls at the initial assessment (p < 0.001). Proportionally, more involved limbs were categorized as poor or moderate at the initial assessment (69.2%) and follow-up (50%) in comparison with the control limbs (14%). The reactive strength index was the only variable to change significantly between the initial assessment and follow-up on the involved limb (p < 0.05). No changes in the proportion of ACL reconstructed individuals categorized as poor or moderate SSC function at the follow-up assessment were observed. Residual deficits are present in SLDJ performance, SSC function, and ground reaction force characteristics after ACL reconstruction. The reactive strength index should not be the sole metric, as observed increases did not correspond with changes in SSC function.
Copyright © 2021 National Strength and Conditioning Association.