Rationale: Brain injury induces systemic immunosuppression, increasing the risk of viral reactivations and altering neurological recovery. Objectives: To determine if systemic immune alterations and lung replication of herpesviridae are associated and can help predict outcomes after brain injury. Methods: We collected peripheral blood mononuclear cells in patients with severe brain injury requiring invasive mechanical ventilation. We systematically searched for respiratory herpes simplex virus (HSV) replications in tracheal aspirates. We also performed chromatin immunoprecipitation sequencing, RNA-sequencing, and in vitro functional assays of monocytes and CD4 T cells collected on Day 1 to characterize the immune response to severe acute brain injury. The primary outcome was the Glasgow Outcome Scale Extended at 6 months. Measurements and Main Results: In 344 patients with severe brain injury, lung HSV reactivations were observed in 39% of the 232 patients seropositive for HSV and independently associated with poor neurological recovery at 6 months (hazard ratio, 1.90; 95% confidence interval, 1.08-3.57). Weighted gene coexpression network analyses of the transcriptomic response of monocytes to brain injury defined a module of 721 genes, including PD-L1 and CD80, enriched for the binding DNA motif of the transcriptional factor Zeb2 and whose ontogenic analyses revealed decreased IFN-γ-mediated and antiviral response signaling pathways. This monocyte signature was preserved in a validation cohort and predicted the neurological outcome at 6 months with good accuracy (area under the curve, 0.786; 95% confidence interval, 0.593-0.978). Conclusions: A specific monocyte signature is associated with HSV reactivation and predicts poor recovery after brain injury. The alterations of the immune control of herpesviridae replication are understudied and represent a novel therapeutic target.
Keywords: brain injury; controlled human infection; herpes simplex virus; monocytes; pneumonia.