c-kit is a classical proto-oncogene that encodes a receptor tyrosine kinase (RTK) that responds to stem cell factor (SCF). C-KIT signaling is a critical regulator of cell proliferation, survival, and migration and is implicated in several physiological processes, including pigmentation, hematopoiesis and gut movement. Accumulating evidence suggests that dysregulated c-KIT function, caused by either overexpression or mutations in c-kit, promotes tumor development and progression in various human cancers. In this review, we discuss the most important structural and biological features of c-KIT, as well as insights into the activation of intracellular signaling pathways following SCF binding to this RTK. We then illustrate how different c-kit alterations are associated with specific human cancers and describe recent studies that highlight the contribution of c-KIT to cancer stemness, epithelial-mesenchymal transition and progression to metastatic disease in different experimental models. The impact of tyrosine kinase inhibitors in treating c-KIT-positive tumors and limitations due to their propensity to develop drug resistance are summarized. Finally, we appraise the potential of novel therapeutic approaches targeting c-KIT more selectively while minimizing toxicity to normal tissue.