Clostridium inhabiting pit mud (PM) is one of the important bacterial populations for synthesizing flavor compounds of Chinese strong-flavor baijiu. The long-term cereal fermentation with sorghum as the main raw material creates an environment rich in starch, ethanol, and organic acids (mainly lactic acid). However, the genetic factors underpinning Clostridium's adaptation to PM remain poorly understood. Here, we performed comparative genomic analysis between 30 pit mud-associated (PMA) and 100 non-pit mud-associated (NPMA) Clostridium strains. Comparison analysis of the enrichment of KEGG pathways between PMA and NPMA Clostridium strains showed two-component system, flagellar assembly, and bacterial chemotaxis pathways related to environmental adaptation were enriched in PMA strains. The number of genes encoding alcohol dehydrogenase and l-lactate dehydrogenase in PMA Clostridium strains was significantly higher than that in NPMA, which is helpful for them to adapt to the ethanol- and lactic acid-rich environment. The analysis of carbohydrate-active enzymes demonstrated that glycoside hydrolases (GHs) was the most abundant family in all Clostridium strains, and genes encoding GH4 and GH13, involved in starch and sucrose metabolism, were enriched in PMA Clostridium. Horizontal gene transfer analysis revealed that multiple genes encoding the enzymes involved in carbohydrate and amino acid metabolism were transferred from Bacillus to Clostridium in pit mud. Most of the PMA Clostridium strains had good potential for butyric acid synthesis from ethanol, lactic acid, and starch. Collectively, this study furthers our understanding of the habitat adaptation and metabolic potential of PMA Clostridium strains. IMPORTANCE Pit mud is a typical artificial ecosystem for Chinese liquor production. Clostridium inhabiting pit mud plays essential roles in the flavor formation of strong-flavor baijiu. The relative abundance of Clostridium increased with pit mud quality, further influencing the quality of baijiu. So far, the ecological adaptation of Clostridium to a pit mud-associated lifestyle is largely unknown. Here, comparative genomic analysis of pit mud-associated (PMA) and non-pit mud-associated (NPMA) Clostridium strains was performed. We found genes related to the metabolism of starch, ethanol, and lactic acid were enriched in PMA Clostridium strains, which facilitated their adaptation to the unique brewing environment. In addition, horizontal gene transfer contributed to the adaptation of Clostridium to pit mud. Our findings provide genetic insights on PMA Clostridium strains' ecological adaptation and metabolic characteristics.
Keywords: CAZymes; Clostridium; horizontal gene transfer; pit mud; short-chain fatty acids.