Aims: The present work assessed the ability of two selected lactic acid bacteria (LAB) strains (Schleiferilactobacillus perolens CRL1724 and Lactococcus lactis subsp. lactis CRL1655) to inhibit the adherence of bovine mastitis pathogens to mammary epithelial cells (MAC-T) and their effects (if any) on the structure of the gland after intramammary inoculation at dry-off.
Methods and results: Established bovine mammary epithelial cells (MAC-T) were used to assess the LAB strains' ability to inhibit the adherence of bovine mastitis pathogens. Monolayers of MAC-T cells were co-cultured with the LABs and then individual pathogen was added. Both strains prevented the adherence of S. aureus RC108, S. chromogenes, S. uberis UT102 and E. coli ATCC 35218. Adherence of the latter two pathogens was inhibited most strongly in vitro. To evaluate the effect of the LAB on the structure of the bovine udders, quarters were intramammary inoculated with the LAB mixture at dry-off. After slaughtering, the teats were dissected and histopathologically analysed. No modifications were identified post-inoculation in the structure of the epithelial, subepithelial and connective tissues of the mammary gland.
Conclusions: Probiotic strains L. lactis subsp lactis CRL1655 and S. perolens CRL1724 were both able to inhibit the adherence of a number of bovine mastitis pathogens in vitro, and that the intramammary inoculation of these strains at the established dose and concentration did not cause significant alterations in the mammary epithelium nor had undesirable effects on tissues, and may therefore be considered harmless.
Significance and impact of study: The promising findings demonstrated in this work support the potential of probiotic micro-organisms as a natural and effective alternative to prevent bovine mastitis during the dry-off period.
Keywords: adherence; bovine mastitis; lactic acid bacteria; prevention; probiotics.
© 2022 Society for Applied Microbiology.