Background and aim: Male hypogonadism results from failure to produce physiological levels of testosterone. Testosterone in men is essential in masculine development, sperm production, and adult man's health. Osteoporosis is one of the consequences of hypogonadism. Regular physical exercise and exogenous testosterone administration are frequently used to prevent or treat this condition. This study aimed to understand the effects of lifelong exercise training and testosterone levels (isolated and together) in the main bone structure parameters.
Materials and methods: A total of 24 rats were used and randomly divided into four groups: Control group (CG; n=6), exercised group (EG, n=6), testosterone group (TG, n=6), and testosterone EG (TEG, n=6). A micro-computed tomography equipment was used to evaluate 15 bone parameters.
Results: Both factors (exercise training and testosterone) seem to improve the bone resistance and microstructure, although in different bone characteristics. Testosterone influenced trabecular structure parameters, namely, connectivity density, trabecular number, and trabecular space. The exercise promoted alterations in bone structure as well, although, in most cases, in different bone structure parameters as bone mineral density and medullar mineral density.
Conclusion: Overall, exercise and testosterone therapy seems to have a synergistic contribution to the general bone structure and resistance. Further studies are warranted, comparing different individual factors, as gender, lifestyle, or testosterone protocols, to constantly improve the medical management of hypogonadism (and osteoporosis).
Keywords: bone; exercise training; hypogonadism; micro-computed tomography; osteoporosis; testosterone.
Copyright: © Jota-Baptista, et al.