Computational study on the affinity of potential drugs to SARS-CoV-2 main protease

J Phys Condens Matter. 2022 May 18;34(29). doi: 10.1088/1361-648X/ac6c6c.

Abstract

Herein, we report a computational investigation of the binding affinity of dexamethasone, betamethasone, chloroquine and hydroxychloroquine to SARS-CoV-2 main protease using molecular and quantum mechanics as well as molecular docking methodologies. We aim to provide information on the anti-COVID-19 mechanism of the abovementioned potential drugs against SARS-CoV-2 coronavirus. Hence, the 6w63 structure of the SARS-CoV-2 main protease was selected as potential target site for the docking analysis. The study includes an initial conformational analysis of dexamethasone, betamethasone, chloroquine and hydroxychloroquine. For the most stable conformers, a spectroscopic analysis has been carried out. In addition, global and local reactivity indexes have been calculated to predict the chemical reactivity of these molecules. The molecular docking results indicate that dexamethasone and betamethasone have a higher affinity than chloroquine and hydroxychloroquine for their theoretical 6w63 target. Additionally, dexamethasone and betamethasone show a hydrogen bond with the His41 residue of the 6w63 protein, while the interaction between chloroquine and hydroxychloroquine with this amino acid is weak. Thus, we confirm the importance of His41 amino acid as a target to inhibit the SARS-CoV-2 Mpro activity.

Keywords: SARS-CoV-2 main protease; betamethasone; chloroquine; dexamethasone; hydroxychloroquine; molecular docking.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acids
  • Betamethasone
  • COVID-19 Drug Treatment*
  • Chloroquine / chemistry
  • Chloroquine / pharmacology
  • Coronavirus 3C Proteases
  • Dexamethasone / pharmacology
  • Humans
  • Hydroxychloroquine / chemistry
  • Hydroxychloroquine / pharmacology
  • Molecular Docking Simulation
  • Molecular Dynamics Simulation
  • Protease Inhibitors / pharmacology
  • SARS-CoV-2*

Substances

  • Amino Acids
  • Protease Inhibitors
  • Hydroxychloroquine
  • Dexamethasone
  • Chloroquine
  • Betamethasone
  • 3C-like proteinase, SARS-CoV-2
  • Coronavirus 3C Proteases