Diagnostic performance of hippocampal volumetry in Alzheimer's disease or mild cognitive impairment: a meta-analysis

Eur Radiol. 2022 Oct;32(10):6979-6991. doi: 10.1007/s00330-022-08838-9. Epub 2022 May 4.

Abstract

Objective: To evaluate the diagnostic performance of hippocampal volumetry for Alzheimer's disease (AD) or mild cognitive impairment (MCI).

Methods: The MEDLINE and Embase databases were searched for articles that evaluated the diagnostic performance of hippocampal volumetry in differentiating AD or MCI from normal controls, published up to March 6, 2022. The quality of the articles was evaluated by the QUADAS-2 tool. A bivariate random-effects model was used to pool sensitivity, specificity, and area under the curve. Sensitivity analysis and meta-regression were conducted to explain study heterogeneity. The diagnostic performance of entorhinal cortex volumetry was also pooled.

Results: Thirty-three articles (5157 patients) were included. The pooled sensitivity and specificity for AD were 82% (95% confidence interval [CI], 77-86%) and 87% (95% CI, 82-91%), whereas those for MCI were 60% (95% CI, 51-69%) and 75% (95% CI, 67-81%), respectively. No difference in the diagnostic performance was observed between automatic and manual segmentation (p = 0.11). MMSE scores, study design, and the reference standard being used were associated with study heterogeneity (p < 0.01). Subgroup analysis demonstrated a higher diagnostic performance of entorhinal cortex volumetry for both AD (pooled sensitivity: 88% vs. 79%, specificity: 92% vs. 89%, p = 0.07) and MCI (pooled sensitivity: 71% vs. 55%, specificity: 83% vs. 68%, p = 0.06).

Conclusions: Our meta-analysis demonstrated good diagnostic performance of hippocampal volumetry for AD or MCI. Entorhinal cortex volumetry might have superior diagnostic performance to hippocampal volumetry. However, due to a small number of studies, the diagnostic performance of entorhinal cortex volumetry is yet to be determined.

Key points: • The pooled sensitivity and specificity of hippocampal volumetry for Alzheimer's disease were 82% and 87%, whereas those for mild cognitive impairment were 60% and 75%, respectively. • No significant difference in the diagnostic performance was observed between automatic and manual segmentation. • Subgroup analysis demonstrated superior diagnostic performance of entorhinal cortex volumetry for AD (pooled sensitivity: 88%, specificity: 92%) and MCI (pooled sensitivity: 71%, specificity: 83%).

Keywords: Alzheimer’s disease; Diagnostic accuracy; Hippocampal volumetry; Meta-analysis; Mild cognitive impairment.

Publication types

  • Meta-Analysis

MeSH terms

  • Alzheimer Disease* / diagnosis
  • Cognitive Dysfunction* / diagnostic imaging
  • Hippocampus / diagnostic imaging
  • Humans
  • Sensitivity and Specificity