COVID-19 has claimed over 200 000 lives in the USA and put healthcare workers at risk. Healthcare workers have an increased exposure risk from aerosol-generating procedures such as endotracheal intubation. New barrier designs such as the acrylic box and horizontal plastic drape have emerged to reduce exposure to airborne particles. Particle generating models are needed to test aerosol generating procedure (AGP) barrier designs. To achieve this, an aerosol model that generates a visible and measurable increase in particles which SARS-CoV-2 could travel on and that can also be intubated was created. The model was created using a Laerdal Airway Management Trainer (Laerdal Medical, Stavanger, Norway) combined with a nebuliser and Ambu bag-valve resuscitator (Ambu, Columbia, Maryland, USA). Nebulised Glo Germ (Glo Germ, Moab, Utah, USA) dissolved in saline solution was moved through the tubing and out of the mannequin's mouth with compression of the Ambu bag. This nebulisation was visualised under ultraviolet light and the quantity of particles between 0.3 and 10.0 μm was measured with a particle counter. Nebulisation was visible exiting the mouth of the mannequin. Nebulised Glo Germ was visualised under ultraviolet light moving in the ambient air. Particles in the size range of 0.3-0.5 µm increased by 20-fold and 1-10 µm increased by 10 252%. SARS-CoV-2 can travel on aerosol and droplet particles and particle generating models are needed to visualise and measure exposure areas and the path particles take during AGPs. We used existing medical and simulation supplies to create a particle simulator.
Keywords: COVID-19; critical care; simulation in healthcare; simulator design.
© Author(s) (or their employer(s)) 2021. No commercial re-use. See rights and permissions. Published by BMJ.