Chemically intensive crop production depletes wildlife food resources, hinders animal development, health, survival, and reproduction, and it suppresses wildlife immune systems, facilitating emergence of infectious diseases with excessive mortality rates. Gut microbiota is crucial for wildlife's response to environmental stressors. Its composition and functionality are sensitive to diet changes and environmental pollution associated with modern crop production. In this study we use shotgun metagenomics (median 8,326,092 sequences/sample) to demonstrate that exposure to modern crop production detrimentally affects cecal microbiota of sharp-tailed grouse (Tympanuchus phasianellus: 9 exposed, 18 unexposed and greater prairie chickens (T. cupido; 11, 11). Exposure to crop production had greater effect on microbiota richness (t = 6.675, P < 0.001) and composition (PERMANOVA r2 = 0.212, P = 0.001) than did the host species (t = 4.762, P < 0.001; r2 = 0.070, P = 0.001) or their interaction (t = 3.449; r2 = 0.072, both P = 0.001), whereas sex and age had no effect. Although microbiota richness was greater in exposed (T. cupido chao1 = 152.8 ± 20.5; T. phasianellus 115.3 ± 17.1) than in unexposed (102.9 ± 15.1 and 101.1 ± 17.2, respectively) birds, some beneficial bacteria dropped out of exposed birds' microbiota or declined and were replaced by potential pathogens. Exposed birds also had higher richness and load of virulome (mean ± standard deviation; T. cupido 24.8 ± 10.0 and 10.1 ± 5.5, respectively; T. phasianellus 13.4 ± 6.8/4.9 ± 2.8) and resistome (T. cupido 46.8 ± 11.7/28.9 ± 10.2, T. phasianellus 38.3 ± 16.7/18.9 ± 14.2) than unexposed birds (T. cupido virulome: 14.2 ± 13.5, 4.5 ± 4.2; T. cupido resistome: 31.6 ± 20.2 and 13.1 ± 12.0; T. phasianellus virulome: 5.2 ± 4.7 and 1.4 ± 1.5; T. phasianellus resistome: 13.7 ± 16.1 and 4.0 ± 6.4).
Keywords: Antibiotic resistance; Dysbiosis; Microbiota; Prairie grouse; Tympanuchus; Virulence factors.
Published by Elsevier Ltd.